Acute suppurative sialadenitis

Acute suppurative sialadenitis (including parotitis) is usually caused by Staphylococcus aureus. But sometimes it may be polymicrobial in adults. In acute suppurative sialadenitis, the glands are enlarged, often hot and tense, and pus may be expressed from the Stensen's duct. The patient is usually systemically unwell, dehydrated and has difficulty swallowing.

Intraoral view of purulence emanating from the parotid duct orifice in a patient with acute suppurative parotitis [1]. 


Management


Management of acute suppurative sialadenitis includes 
  • urgent referral to hospital for surgical review
  • rehydration 
  • culture and susceptibility testing of blood samples if the swelling is fluctuant, intraductal or surgical drainage; send pus for culture and susceptibility testing 
  • antibiotic therapy, given intravenously initially then orally once the patient can swallow. 

If S. aureus is identified in a blood culture, treat as S. aureus bacteraemia. If the results of blood culture indicate a polymicrobial bacteraemia, take expert advice. 


Intravenous antibiotic therapy for acute suppurative sialadenitis 


Initiate empirical antibiotic therapy for acute suppurative sialadenitis in conjunction with local intervention or drainage. Use flucloxacillin 2 g (in case of child: 50 mg/kg up to 2 g) intravenously, 6-hourly; afterwards you can switch to oral therapy once the patient can swallow.

For patients with risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection use vancomycin intravenously (for doses see details in iridium course); switch to oral therapy once the patient can swallow.

In some regions, based on local community acquired–MRSA susceptibility patterns, clindamycin or lincomycin is a suitable alternative to vancomycin.
  • clindamycin 600 mg (child: 15 mg/kg up to 600 mg) intravenously, 8-hourly; switch to oral therapy once the patient can swallow OR
  • lincomycin 600 mg (child: 15 mg/kg up to 600 mg) intravenously, 8-hourly; switch to oral therapy once the patient can swallow.

For patients with immediate nonsevere or delayed nonsevere hypersensitivity to penicillins and without risk factors for MRSA, use cefazolin 2 g (child: 50 mg/kg up to 2 g) intravenously, 8-hourly; switch to oral therapy once the patient can swallow.
 
For patients with immediate severe or delayed severe hypersensitivity to penicillins and without risk factors for MRSA, use clindamycin or lincomycin as above.


Oral continuation therapy for acute suppurative sialadenitis 



Initiate oral continuation therapy once the patient can swallow. If the results of culture and susceptibility
testing are available, modify oral therapy accordingly. If the results of susceptibility testing are not
available, use dicloxacillin 500 mg (child: 12.5 mg/kg up to 500 mg) orally, 6-hourly for a total of 10 days (oral & intravenous) or flucloxacillin 500 mg (child: 12.5 mg/kg up to 500 mg) orally, 6-hourly for a total of 10 days (intravenous plus oral).

For patients with risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection for whom results of susceptibility testing are not available, use trimethoprim+sulfamethoxazole 160+800 mg (child 1 month or older: 4+20 mg/kg up to 160+800 mg) orally, 12-hourly for a total of 10 days (intravenous plus oral) OR clindamycin 450 mg (child: 10 mg/kg up to 450 mg) orally, 8-hourly for a total of 10 days (intravenous plus oral)*

For patients with immediate nonsevere or delayed nonsevere hypersensitivity to penicillins and without risk factors for MRSA, use
cefalexin 500 mg (child: 12.5 mg/kg up to 500 mg) orally, 6-hourly.

For patients with immediate severe or delayed severe hypersensitivity to penicillins and without risk factors for MRSA, use trimethoprim+sulfamethoxazole or clindamycin as above.

*An oral liquid formulation of clindamycin is not commercially available; for formulation options for children or people with swallowing difficulties, see the Don’t Rush to Crush Handbook, published by the Society of Hospital Pharmacists of Australia.

Ref: 
  1. HealthJade
  2. Therapeutic Guidelines Australia 2019



Dental Burs

Diamond burs are generally used for reducing tooth structures to prepare cavities for restorations or place crowns or porcelain veneers. Diamonds may also be used to smooth, refine, and polish composite or porcelain material.

Tooth Whitening

Photograph showing before and and after teeth whitening procedure. 

Tooth whitening is done to correct the discoloration of a tooth. When we talk about discoloration of a tooth, we mean to say that  the color of a tooth has changed from its normal white color to  light yellow,  yellow,  light brown to dark brown  or from light grey to dark grey or  to complete black. The discolouration may be of one tooth or all the teeth may be discoloured. Discoloration of a tooth is caused by several factors. It may be due to deposition of external stains over the surfaces of a tooth or it may be because of the internal position of certain chemicals into the teeth structure at molecular level during the period when teeth were being formed in the mother’s womb.

Composites: Composition

Composites are tooth coloured restorative materials that are usually recommended for class III, IV and class I cavities with less or no occlusal stress and esthetics are important. Specially designed composites are used in almost 50% of class II restorations, although less durable in comparison to dental amalgam. Composites can be classified as microfilled, nanofilled, flowable, packable, all purpose and laboratory. Composites are used for provisional restorations and core build-ups and in fibre-reinforced posts.

Composites: Properties

You have read about the composition of dental composites in earlier class notes This article will speak about the properties. 

Properties of Composites

The important properties of the composites are as follows:
  1. Polymerisation shrinkage - should be low
  2. Water sorption - should be low
  3. Coefficient of thermal expansion - should be same as tooth
  4. Fracture resistance - should be high
  5. Wear resistance - should be high
  6. Radiopacity- should be high
  7. Bond strength to enamel & dentin - should be high
  8. Colour match to tooth structure - should be excellent
  9. Manipulation - should be easy
  10. Finishing and polishing - should be easy
Few of the above mentioned properties may be important for anterior than posteriors restorations and vice versa. The properties of 
microfilled and nanofilled composites are same while the microhybrid's differ from both of them.

Direct Esthetic Restorative Materials

Direct Esthetic Restorative Materials

There are four types of direct esthetic restorative materials currently in use. They are:

  1. Composites
  2. Compomers
  3. Hybrid Ionomers
  4. Glass Ionomers

Composites are dominating the materials used for direct esthetic restorations. Glass ionomers are primarily used for restorations of cervical eroded areas. Hybrid ionomers provide better esthetics than glass ionomers. Compomers provide improved handling and fluoride release when compared with composites.

Polysulfide Impression Materials

Permlastic is a polysulfide, condensation-cured, elastomeric impression material in three viscosities


Polysulfide impression materials are flexible but do not have the major changes in dimensions during storage like agar and alginate. Furthermore, the polysulfide impression is much stronger and more resistant to tearing than agar or alginate. It can be electroformed and therefore metal dies or models, in addition to gypsum models, can be prepared. 

Non-carious loss of tooth structure

 

Types, clinical features, Causes prevention & treatment


Non-carious loss of tooth structure is a problem that is often found in senior citizens and is a cause of many complaints. It is not a new entity but has acquired more attention in recent time.

Types of tooth wear

  1. Abrasion
  2. Attrition
  3. Erosion
  4. Demastication
  5. Abfraction